V-Lab
V-Lab

Documentation>Long Run Value at Risk>Long Term GJR-GARCH Forecast

Definition

Consider an asset’s log-return series rt=μ+εt, where μ is the expected return and εt is a zero-mean white noise. The total log-return between date t and date t+k is then naturally defined as:rt,t+k=i=1krt+kThe standard definition of the k-day ahead VaR of a position in this asset is the 1% or 5% quantile of the return distribution for rt,t+k. V-Lab’s long run risk measures use simulation based methods to calculate the VaR at horizons of k=30 and k=365.

Estimation

One way to calculate VaR is to simulate future realizations of the return process and use the resulting simulations to calculate VaR. For both of the models prescribed in the models section of the documentation, a volatility model is fit to historical data on each day. The resulting model is then simulated ahead 10,000 times, for a horizon of 1-year in advance. All simulations are bootstrapped - that is historical shocks to the return process are drawn at random to simulate each path. VaR is then calculated using both the 1% and 5% quantile of the 10,000 simulated return paths. Finally, logarithmic returns are converted back to arithmetic returns.

For a given day t, the following GJR-GARCH model is fit to historical data:

rt=gtεtgt=ω+αrt-12+γ1rt-1<0+βgt-1

For more details on estimation refer to the GJR-GARCH section of the volatility analysis in V-Lab. Estimation delivers the parameters α, γ, β as well as a historical variance series gt. Subsequently, a historical series of residuals, or shocks, is easily computed by εt=rt/gt. Using this historical residual series and the estimated parameters, 10,000 future return paths rt,t+k are simulated to deliver a measure of VaR.

References

Engle, Robert F., The Risk that Risk Will Change. Journal Of Investment Management (JOIM), Fourth Quarter 2009. https://www.joim.com/article/the-risk-that-risk-will-change/

Engle, R. F. and J. G. Rangel, 2008. The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes. Review of Financial Studies 21(3): 1187-1222. https://www.jstor.org/stable/40056848

Glosten, L. R., R. Jagannathan, and D. E. Runkle, 1993. On The Relation between The Expected Value and The Volatility of Nominal Excess Return on stocks. Journal of Finance 48: 1779-1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x

Zakoian, J. M., 1994. Threshold Heteroscedastic Models. Journal of Economic Dynamics and Control 18: 931-955. https://doi.org/10.1016/0165-1889(94)90039-6